DI.201.HEP Extensions of the standard model of elementary particles (BSM)

1. Study program

10 States programm			
1.1. University	University of Bucharest, West University of Timișoara,		
1.2. Faculty	Faculty of Physics		
1.3. Department	Department of Theoretical Physics, Mathematics, Optics, Plasma		
	and Lasers		
1.4. Field of study	Physics		
1.5. Course of study	Master of Science		
1.6. Study program	High Energy Physics (in English)		
1.7. Study mode	Full-time study		

2. Course unit

2.1. Course unit title Extensions of the standard model of elementary particles (BSM)									
2.2. Teacher			Călin Alexa, Roxana Zus						
2.3. Tutorials/Practicals instructor(s)				Călin Alexa, Rox	ana Z	us			
2.4. Year of		2.5.		2.6	6. Type of		2.7. Type	Content ¹⁾	DF
study	II	Semester	1	eva	aluation	E	of course		
							unit		
								Type ²⁾	DI

3. Total estimated time (hours/semester)

er i otali estilliatea tillie (noais/seine	,				
3.1. Hours per week in curriculum	4	distribution: Lecture	2	Practicals/Tutorials	2
3.2. Total hours per semester	56	Lecture	28	Practicals/Tutorials	28
Distribution of estimated time for study					hours
3.2.1. Learning by using one's own course notes, manuals, lecture notes, bibliography					30
3.2.2. Research in library, study of electronic resources, field research					30
3.2.3. Preparation for practicals/tutorials/projects/reports/homeworks					32
3.2.4. Preparation for exam					4
3.2.5. Other activities					0

3.3. Total hours of individual study	96
3.4. Total hours per semester	150
3.5. ECTS	6

4. Prerequisites (if necessary)

4.1. curriculum	Quantum mechanics, Electrodynamics, Theory of relativity, Nuclear physics
4.2. competences	Knowledge about: algebra, quantum mechanics, electrodynamics

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	Video projector
5.2. for practicals/tutorials	

¹⁾ fundamental (DF), specialized (DS); complementary (DC)
2) compulsory (DI), elective (DO), noncompulsory disciplines (DFC)

6. Specific competences acquired

or Special Comp	conces acquired
Professional	• Identify and proper use of the main physical laws and principles in a given context: the use
competences	of the concepts of the standard model
	Solving problems of physics under given conditions
	• Use of the physical principles and laws for solving theoretical or practical problems with
	qualified tutoring
	• Rigorous knowledge of quantum field theory, concepts, notions and problems in the area
	of theoretical particle physics and their interactions
	Ability to use this knowledge in interpretation of experimental result and understand
	experiments at CERN; acquire the appropriate understanding of studied fundamental
	mechanisms
Transversal	Efficient use of sources of information and communication resources and training
competences	assistance in a foreign language
	Efficient and responsible implementation of professional tasks, with observance of the
	laws, ethics and deontology.

7. Course objectives

7. Course objectives	,				
7.1. General	To provide a pedagogical introduction to supersymmetry. This course is				
objective	intended to be an elementary and practical introduction to supersymmetry in				
	particle physics providing an accessible, self-contained account of the basic				
	concepts required for a working understanding of the 'Minimal				
	Supersymmetric Standard Model' (MSSM).				
7.2. Specific	Specific objectives will include motivations for supersymmetry, the				
objectives	construction of supersymmetric Lagrangians, superspace and superfields, soft				
	supersymmetry-breaking interactions, the Minimal Supersymmetric Standard				
	Model (MSSM), R-parity and its consequences, the origins of supersymmetry				
	breaking, the mass spectrum of the MSSM, decays of supersymmetric particles,				
	experimental signals for supersymmetry, and some extensions of the minimal				
	framework.				

8. Contents

o. Contents		
8.1. Lecture [chapters]	Teaching techniques	Observations/ hours
Introduction and motivation	Systematic exposition	2 hours
	- lecture. Examples.	
Spinors: Weyl, Dirac and Majorana.		
Introduction to supersymmetry and the		
MSSM.	Systematic exposition	12 hours
The supersymmetry algebra and	- lecture. Examples.	12 Hours
supermultiplets.		
The Wess–Zumino model.		
Superfields. Vector supermultiplets.		
The MSSM. SUSY breaking.		
The Higgs sector and electroweak symmetry.		
Origins of supersymmetry breaking.	Systematic exposition	14 hours
Sparticle masses in the MSSM. Sparticle	- lecture. Examples.	14 nours
decays. Experimental signals for		
supersymmetry.		
Beyond the MSSM.		

Bibliography:

- 1. Ian J.R. Aitchison, Supersymmetry in particle physics an elementary introduction, Cambridge University Press, 2007
- Stephen P. Martin, A Supersymmetry primer, 2016 https://inspirehep.net/literature/448462
 Particle Data Group The Review of Particle Physics (2024) https://pdg.lbl.gov/2024/

8.2. Tutorials [main themes]	Teaching and learning techniques	Observations/hours
Problems specific for each section of the course.	Problem solving.	14 hours
Event generators for high-energy particle collisions. Particles collisions.	Guided work.	14 hours

Bibliography:

- 1. Ian J.R. Aitchison, Supersymmetry in particle physics an elementary introduction, Cambridge University Press, 2007
- 2. Stephen P. Martin, A Supersymmetry primer, 2016 https://inspirehep.net/literature/448462
- 3. PYTHIA 8, https://pythia.org/manuals/pythia8312/Welcome.html
- 4. MadGraph5_aMC@NLO, http://madgraph.phys.ucl.ac.be/
- 5. HEPForge, https://www.hepforge.org/

9. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program)

This course unit develops some theoretical competences, which are fundamental for a Master student in the field of modern physics, corresponding to national and international standards. The contents is in line with the requirement of the main employers of research institutes and universities.

10. Assessment

10. Assessment			
Activity type	10.1. Assessment criteria	10.2. Assessment methods	10.3. Weight in final mark
10.4. Lecture	- coherence and clarity of exposition - correct use of equations/mathematical methods/physical models and theories - ability to indicate/analyse specific examples	Written test/oral examination	60%
10.5.1. Tutorials	ability to use specific problem solving methodsability to analyse the results	Homeworks/written tests	40%

10.6. Minimal requirements for passing the exam

Attendance of at least 50% for the lectures and at least 70% for the tutorials.

Correct solutions to the indicated subjects for obtaining the grade $5\ (10\ points\ scale)$ from all activities, part of the continuous evaluation.

Correct solutions to the indicated subjects for obtaining the grade 5 (10 points scale) within the final exam.

Practicals/Tutorials instructor(s)
Teacher's name and signature
name(s) and signature(s)

Date
4.10.2024

Călin Alexa, Călin Alexa, Roxana Zus Roxana Zus

Date of approval

Head of Department
Lect.dr. Roxana Zus